| 
 | 
楼主
 
 
 楼主 |
发表于 2012-5-16 15:04:39
|
只看该作者
 
 
 
Modeling Rates and Proportions in SAS – 8
From Wensui's blog on Sina 
 
<div><b>7. FRACTIONAL LOGIT MODEL</B></DIV> 
<div><br /></DIV> 
<div>Different from all models introduced previously that assume 
specific distributional families for the proportional outcomes of 
interests, the fractional logit model proposed by Papke and 
Wooldridge (1996) is a quasi-likelihood method that does not 
specify the full distribution but only requires the conditional 
mean to be correctly specified for consistent parameter estimates. 
Under the assumption E(Y|X) = G(X`B) = 1 / (1 + EXP(-X`B)), the 
fractional logit has the identical likelihood function to the one 
for a Bernoulli distribution such that</DIV> 
<div><br /></DIV> 
<div>F(Y) = (G(X`B) ** Y) * (1 – G(X`B)) ** (1 – Y) with 1 
>= Y >= 0 </DIV> 
<div><br /></DIV> 
<div>Based upon the above formulation, parameter estimates are 
calculated in the same manner as in the binary logistic regression 
by maximizing the log likelihood. </DIV> 
<div><br /></DIV> 
<div>In SAS, the most convenient way to implement the fractional 
logit model is with GLIMMIX procedure. In addition, we can also use 
NLMIXED procedure by explicitly specifying the likelihood function 
as shown above.</DIV> 
<div><a href="http://blog.photo.sina.com.cn/showpic.html#url=http://s11.sinaimg.cn/orignal/a28fc28agc01dec8ee4ea" TARGET="_blank"><img SRC="http://s11.sinaimg.cn/middle/a28fc28agc01dec8ee4ea&690" WIDTH="690" HEIGHT="527" NAME="image_operate_74731337134705746" /></A><br /> 
<br /></DIV> |   
 
 
 
 |