SAS中文论坛

 找回密码
 立即注册

扫一扫,访问微社区

查看: 1165|回复: 0
打印 上一主题 下一主题

Modeling Rates and Proportions in SAS – 8

[复制链接]

49

主题

76

帖子

1462

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
1462
楼主
 楼主| 发表于 2012-5-16 15:04:39 | 只看该作者

Modeling Rates and Proportions in SAS – 8

From Wensui's blog on Sina

<div><b>7. FRACTIONAL LOGIT MODEL</B></DIV>
<div><br /></DIV>
<div>Different from all models introduced previously that assume
specific distributional families for the proportional outcomes of
interests, the fractional logit model proposed by Papke and
Wooldridge (1996) is a quasi-likelihood method that does not
specify the full distribution but only requires the conditional
mean to be correctly specified for consistent parameter estimates.
Under the assumption E(Y|X) = G(X`B) = 1 / (1 + EXP(-X`B)), the
fractional logit has the identical likelihood function to the one
for a Bernoulli distribution such that</DIV>
<div><br /></DIV>
<div>F(Y) = (G(X`B) ** Y) * (1 &ndash; G(X`B)) ** (1 &ndash; Y) with 1
&gt;= Y &gt;= 0&nbsp;</DIV>
<div><br /></DIV>
<div>Based upon the above formulation, parameter estimates are
calculated in the same manner as in the binary logistic regression
by maximizing the log likelihood.&nbsp;</DIV>
<div><br /></DIV>
<div>In SAS, the most convenient way to implement the fractional
logit model is with GLIMMIX procedure. In addition, we can also use
NLMIXED procedure by explicitly specifying the likelihood function
as shown above.</DIV>
<div><a href="http://blog.photo.sina.com.cn/showpic.html#url=http://s11.sinaimg.cn/orignal/a28fc28agc01dec8ee4ea" TARGET="_blank"><img SRC="http://s11.sinaimg.cn/middle/a28fc28agc01dec8ee4ea&amp;690" WIDTH="690" HEIGHT="527" NAME="image_operate_74731337134705746" /></A><br />
<br /></DIV>
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|Archiver|SAS中文论坛  

GMT+8, 2025-5-6 15:39 , Processed in 0.072208 second(s), 20 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表