| 
 | 
楼主
 
 
 楼主 |
发表于 2012-1-8 07:01:52
|
只看该作者
 
 
 
Do loop vs. vectorization in SAS/IML
From Dapangmao's blog on sas-analysis 
 
<div class="separator" style="clear: both; text-align: center;"><a href="http://2.bp.blogspot.com/-NDi3PKGCoJI/TwjCTKRfDVI/AAAAAAAAA5M/mZfd87FOJV0/s1600/SGPlot4.png" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="300" src="http://2.bp.blogspot.com/-NDi3PKGCoJI/TwjCTKRfDVI/AAAAAAAAA5M/mZfd87FOJV0/s400/SGPlot4.png" width="400" /></a></div><br /> 
Vectorization is an important skill for many matrix languages. From <a href="http://www.amazon.com/Statistical-Programming-SAS-IML-Software/dp/1607646633/ref=sr_1_1?ie=UTF8&qid=1325973905&sr=8-1">Rick Wiklin’s book about SAS/IML</a> and his recent <a href="http://blogs.sas.com/content/iml/2011/10/10/sasiml-tip-sheets/">cheat sheet</a>,  I found a few vector-wise functions since SAS 9.22. To compare the computation efficiency between the traditional do loop style and the vectorization style, I designed a simple test in SAS/IML: square a number sequence(from 1 to 10000) and calculate the time used. <br /> 
<br /> 
Two modules were written according to these two coding styles. Each module was ran 100 times, and system time consumed was recorded by SAS/IML’s time() function. <br /> 
<pre style="background-color: #ebebeb; border: 1px dashed rgb(153, 153, 153); color: #000001; font-size: 14px; line-height: 14px; overflow: auto; padding: 5px; width: 100%;"><code> 
proc iml; 
   start module1; * Build the first module; 
      result1 = j(10000, 1, 1); * Preallocate memory to the testing vector; 
      do i = 1 to 10000;  * Use a do-loop to square the sequence; 
         result1[i] = i**2;  
      end; 
      store result1; * Return the resulting object; 
   finish;    
   t1 = j(100, 1, 1); * Run the first test; 
   do m = 1 to 100; 
      t0 = time(); * Set a timer; 
         call module1; 
      t1[m] =  time() - t0; 
   end; 
   store t1; 
quit; 
 
proc iml; 
   start module2; * Build the second module; 
      result2 = (1:10000)##2; * Vectorise the sequence; 
      store result2; * Return the resulting object; 
   finish;    
   t2 = j(100, 1, 1); * Run the second test; 
   do m = 1 to 100; 
      t0 = time(); * Set a timer; 
         call module2; 
      t2[m] =  time() - t0; 
   end; 
   store t2; 
quit; 
 
proc iml; 
   load result1 result2; * Validate the results; 
   print result1 result2; 
quit; 
</code></pre><br /> 
Then the results were released to Base SAS and visualized by a box plot with the SG procedures. In this experiment, the winner is the vectorizing method: vectorization seems much faster than do loop in SAS/IML. Therefore, my conclusions are: (1) avoid the do loop if possible;  (2)use those vector-wise functions/operators in SAS/IML; (3) always test the speed of modules/functions by SAS/IML’s time() function.  <br /> 
<pre style="background-color: #ebebeb; border: 1px dashed rgb(153, 153, 153); color: #000001; font-size: 14px; line-height: 14px; overflow: auto; padding: 5px; width: 100%;"><code> 
proc iml; 
   load t1 t2; 
   t = t1||t2; 
   create _1 from t; 
      append from t; 
   close _1; 
   print t; 
quit; 
 
data _2; 
   set _1; 
   length test $25.; 
   test = "do_loop"; time = col1; output; 
   test = "vectorization"; time = col2; output; 
   keep test time; 
run; 
 
proc sgplot data = _2; 
   vbox time / category = test; 
   yaxis grid; 
run; 
</code></pre><div class="blogger-post-footer"><img width='1' height='1' src='https://blogger.googleusercontent.com/tracker/3256159328630041416-7436362807472673480?l=www.sasanalysis.com' alt='' /></div><img src="http://feeds.feedburner.com/~r/SasAnalysis/~4/7dfakh4Du0U" height="1" width="1"/> |   
 
 
 
 |