| 
 | 
楼主
 
 
 楼主 |
发表于 2012-1-13 07:51:54
|
只看该作者
 
 
 
Random seeds
From Dapangmao's blog on sas-analysis 
 
A footnote toward Rick  Wilkin’s recent article “<a href="http://blogs.sas.com/content/iml/2012/01/11/how-to-lie-with-a-simulation/">How to Lie with a Simulation</a>”. (Sit in front of a laptop w/o SAS; have to port all SAS/IML codes into R)<br /> 
<div class="separator" style="clear: both; text-align: center;"><a href="http://1.bp.blogspot.com/-f5Ni1mnG7TA/Tw9XYtJhs6I/AAAAAAAAA5k/JoMLm3XZQys/s1600/plot1.png" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="250" src="http://1.bp.blogspot.com/-f5Ni1mnG7TA/Tw9XYtJhs6I/AAAAAAAAA5k/JoMLm3XZQys/s400/plot1.png" width="400" /></a></div><br /> 
Generated 10 seeds randomly to run Stochastic simulation of Buffon's needle experiment by <a href="http://blogs.sas.com/content/iml/2012/01/04/simulation-of-buffons-needle-in-sas-2/">Rick's method</a>. Hardly converge any of them …. <br /> 
<pre style="background-color: #ebebeb; border: 1px dashed rgb(153, 153, 153); color: #000001; font-size: 14px; line-height: 14px; overflow: auto; padding: 5px; width: 100%;"><code> 
# Replicate Rick Wicklin's SAS/IML codes for Buffon's needle experiment  
simupi <- function(N, seed) { 
  set.seed(seed) 
  z <- matrix(runif(N*2, 0, 1), N, 2) 
  theta <- pi*z[, 1] 
  y <- z[, 2] / 2 
  P <- sum(y < sin(theta)/2) / N 
  piEst <- 2/P 
  Trials <- 1:N 
  Hits <- (y < sin(theta)/2) 
  Pr <- cumsum(Hits)/Trials 
  Est <- 2/Pr 
  cbind(Est, Trials, seed) 
} 
 
# Generated 10 seeds randomly 
seed_vector <- floor(runif(1:10)*10000) 
 
# Each simulation with 50000 iterations 
N <- 50000 
 
# Run these 10 simulations 
rt <- list() 
for (i in 1:length(seed_vector)) { 
  rt[[i]] <- simupi(N, seed_vector[i]) 
} 
results <- as.data.frame(do.call("rbind", rt)) 
results$seed <- as.factor(results$seed) 
 
# Visualize individual simulation results 
library(ggplot2) 
p <- qplot(x = Trials, y = Est, data = results, geom = "line",  
           color = seed, ylim = c(2.9, 3.5)) 
p + geom_line(aes(x = Trials, y = pi), color = "Black")  
ggsave("c:/plot1.png") 
</code></pre><br /> 
<div class="separator" style="clear: both; text-align: center;"><a href="http://2.bp.blogspot.com/-QgiXx9qaaFY/Tw9XnFUYFbI/AAAAAAAAA5w/YOpTHLt6aj8/s1600/plot2.png" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="250" src="http://2.bp.blogspot.com/-QgiXx9qaaFY/Tw9XnFUYFbI/AAAAAAAAA5w/YOpTHLt6aj8/s400/plot2.png" width="400" /></a></div><br /> 
<br /> 
Averaging all results of the 10 simulations out. Then the curve converges easily. The application of this Monte Carlo simulation in Buffon's needle experiment is explained <a href="http://blogs.sas.com/content/iml/2012/01/11/how-to-lie-with-a-simulation/#comments">here</a> by Rick Wicklin. <br /> 
<pre style="background-color: #ebebeb; border: 1px dashed rgb(153, 153, 153); color: #000001; font-size: 14px; line-height: 14px; overflow: auto; padding: 5px; width: 100%;"><code> 
# Visuazlie the average result 
rtmean <- aggregate(Est ~ Trials, data = results, mean) 
p <- qplot(x = Trials, y = Est, data = rtmean, geom = "line") 
p + geom_line(aes(x = Trials, y = pi), color = "Red") 
ggsave("c:/plot2.png") 
</code></pre><div class="blogger-post-footer"><img width='1' height='1' src='https://blogger.googleusercontent.com/tracker/3256159328630041416-6280498129719129021?l=www.sasanalysis.com' alt='' /></div><img src="http://feeds.feedburner.com/~r/SasAnalysis/~4/66FM09kx2wk" height="1" width="1"/> |   
 
 
 
 |